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Abstract

Subfamily Caesalpinioideae with ca. 4,600 species in 152 genera is the second-largest subfamily of leg-
umes (Leguminosae) and forms an ecologically and economically important group of trees, shrubs and
lianas with a pantropical distribution. Despite major advances in the last few decades towards aligning
genera with clades across Caesalpinioideae, generic delimitation remains in a state of considerable flux,
especially across the mimosoid clade. We test the monophyly of genera across Caesalpinioideae via phylog-
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enomic analysis of 997 nuclear genes sequenced via targeted enrichment (Hybseq) for 420 species and 147
of the 152 genera currently recognised in the subfamily. We show that 22 genera are non-monophyletic
or nested in other genera and that non-monophyly is concentrated in the mimosoid clade where ca.
25% of the 90 genera are found to be non-monophyletic. We suggest two main reasons for this pervasive
generic non-monophyly: (i) extensive morphological homoplasy that we document here for a handful of
important traits and, particularly, the repeated evolution of distinctive fruit types that were historically
emphasised in delimiting genera and (ii) this is an artefact of the lack of pantropical taxonomic syntheses
and sampling in previous phylogenies and the consequent failure to identify clades that span the Old
World and New World or conversely amphi-Atlantic genera that are non-monophyletic, both of which are
critical for delimiting genera across this large pantropical clade. Finally, we discuss taxon delimitation in
the phylogenomic era and especially how assessing patterns of gene tree conflict can provide additional in-
sights into generic delimitation. This new phylogenomic framework provides the foundations for a series
of papers reclassifying genera that are presented here in Advances in Legume Systematics (ALS) 14 Part 1, for
establishing a new higher-level phylogenetic tribal and clade-based classification of Caesalpinioideae that
is the focus of ALS14 Part 2 and for downstream analyses of evolutionary diversification and biogeography
of this important group of legumes which are presented elsewhere.
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Introduction

In 2017, the Legume Phylogeny Working Group established a new subfamily classifica-
tion of the Leguminosae (LPWG 2017), which dealt with the longstanding problem
of the paraphyly of old sense subfamily Caesalpinioideae DC. by formally dividing the
family into six subfamilies: Cercidoideae LPWG, Detarioideac Burmeist., Duparque-
tioideae LPWG, Dialioideae LPWG, Caesalpinioideae and Papilionoideae DC. Sub-
family Caesalpinioideae was especially impacted by this new classification because sev-
eral large clades previously included within it were afforded subfamily rank, while at the
same time the former subfamily Mimosoideae DC., which is nested within Caesalpin-
ioideae, was subsumed within the re-circumscribed Caesalpinioideae and is now simply
referred to as the mimosoid clade (LPWG 2017). The idea that Leguminosae comprises
six main lineages has since been amply confirmed by phylogenomic analyses of large
nuclear gene and plastome DNA sequence datasets (Koenen et al. 2020a; Zhang et al.
2020; Zhao et al. 2021) providing robust support for the six subfamilies. Establishment
of this new classification has shifted the focus of current legume systematics research to
development of phylogenetically-based tribal (e.g. de la Estrella et al. 2018 for Detari-
oideae) and clade-based (e.g. Sinou et al. 2020 for Cercidoideae) higher-level classifica-
tions and, especially, towards establishment of robust generic systems for each subfamily.
Here, we present a phylogenomic backbone for the re-circumscribed subfamily Caesal-
pinioideae as the basis for a new higher-level and generic classification of that subfamily.

Caesalpinioideae sensu LPWG (2017) is the second largest subfamily of legumes
with ca. 4,600 species currently placed in 152 genera (LPWG 2017 plus additions, see
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below). Within this subfamily, ca. 3,400 species and 90 genera are placed in the mimosoid
clade corresponding to the former subfamily Mimosoideae, which is nested within new
sense Caesalpinioideae (LPWG 2017). Caesalpinioideae has a pantropical distribution
and many of its lineages form ecologically abundant or dominant elements across each
of the major lowland tropical biomes — seasonally dry tropical forests (“the succulent
biome” sensu Schrire et al. 2005 and Ringelberg et al. 2020), savannas and tropical rain
forests — thus spanning the full lowland tropical rainfall spectrum from arid to hyper-wet,
with just a small fraction of species extending into the warm temperate zone, a subset of
which are frost tolerant. Caesalpinioideae species are infrequent above 2500 m elevation
in the tropics and are notably absent from mid- and high-elevation tropical montane
forests, with only a few exceptions (e.g. some Inga Mill. spp., Paraserianthes lophantha
(Vent.) I.C. Nielsen subsp. montana (Jungh.) 1.C. Nielsen). The ecological versatility of
the subfamily across the lowland tropical moisture availability spectrum is matched by its
great diversity of life-history strategies, from massive canopy-emergent rainforest trees to
small desert shrubs, and functionally-herbaceous savanna geoxyles to woody lianas and
aquatic plants (Lewis et al. 2005; LPWG 2013, 2017; Koenen et al. 2020b; Ringelberg
et al. 2022). Many species are economically important because of their highly-nutritious
fruits, valuable wood, nitrogen-rich leaves and other products (Lewis et al. 2005) and
are especially prominent as multipurpose trees in tropical silvo-pastoral and other agro-
forestry systems. Several other species constitute some of the world’s most serious inva-
sive weeds (e.g. Leucaena leucocephala (Lam.) de Wit, several Mimosa L. spp. and Acacia
Mill. spp., Prosopis juliflora (Sw.) DC.). Generic diversity is highest in the Neotropics
and Africa and there are important centres of species diversity in Mexico and Central
America, lowland South America, Africa, Madagascar, parts of S.E. Asia and Australia.
Caesalpinioideae includes some of the largest genera in the legume family, such as Acacia
with > 1,000 species concentrated in dry parts of Australia and Mimosa with > 500 spe-
cies mostly in the Neotropics, as well as Chamaecrista Moench and Senna Mill., each with
300+ species distributed pantropically, /nga Mill. with ca. 300 species restricted to the
Neotropics, almost entirely in rainforests and Vachellia Wight & Arn. (ca. 160 species)
and Senegalia Raf. (ca. 220 species), two pantropical genera concentrated in drier envi-
ronments, within which the iconic umbrella-crown trees of African savannas are found.

Numbers of genera across Caesalpinioideae have increased progressively through
the last 270 years, but are difficult to track, because of the altered delimitation of the
subfamily. However, the history of generic delimitation in mimosoids illustrates the
overall trajectory of numbers of genera. Linnaeus (1753) placed all known mimosoids
in a single genus Mimosa, which was later subdivided by Willdenow (1805) into five
genera: Inga, Mimosa, Schrankia Willd., Desmanthus Willd. and Acacia. In 1825, de
Candolle added five more genera, but the real foundations for all subsequent work
were established by Bentham (1842, 1875) notably in his ‘Revision of suborder Mi-
moseae’ in 1875, which recognised six tribes and 46 genera, based on examination of
1,200 species known at that time.

The legacy of Bentham’s generic system has been long-lasting. At the heart of
Bentham’s system were a set of large, geographically widespread genera, including
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Acacia, Calliandra Benth., Pithecellobium Mart. and Prosopis L., all of which, with
the advent of molecular phylogenetics, have been shown to be non-monophyletic.
The disintegration of Acacia into (currently) seven segregate genera (Acacia, Acaciella
Britton & Rose, Mariosousa Seigler & Ebinger, Parasenegalia Seigler & Ebinger, Pseu-
dosenegalia Seigler & Ebinger, Senegalia and Vachellia), based on 20 years of molecular
phylogenetic studies (Clarke et al. 2000; Miller and Bayer 2000, 2001, 2003; Robin-
son and Harris 2000; Luckow et al. 2003; Miller et al. 2003, 2013, 2017; Murphy et
al. 2003; Seigler et al. 2006a, b; Brown et al. 2008; Bouchenak-Khelladi et al. 2010;
Goémez-Acevedo et al. 2010; Miller and Seigler 2012; Kyalangalilwa et al. 2013; Mish-
ler et al. 2014; Boatwright et al. 2015; Terra et al. 2017; Koenen et al. 2020b) (Figs 1
and 6-8) has been the most prominent example in legumes of the dissolution of one
of Bentham’s broadly circumscribed pantropical genera. Pithecellobium and Calliandra
have suffered similar fates (Barneby and Grimes 1996, 1997; Barneby 1998; de Souza
et al. 2013, 2016). In contrast, although Bentham (1875) had restricted his concept
of the genus Albizia Durazz. to just Old World species, Nielsen (1981) expanded the
genus pantropically, creating the last big ‘dustbin genus’ of mimosoids (Koenen et al.
2020b). By far the most persistent generic delimitation problems surround those of
former tribe Ingeae, where starkly contrasting generic systems and numerous generic
transfers have caused much on-going confusion (reviewed by Brown 2008).

By 1981, the number of mimosoid genera had risen to 62 in Advances in Legume
Systematics Part 1 (Elias 1981), 78 in Legumes of the World (Lewis et al. 2005) and in
the most recent census (LPWG 2017) to 84, with 148 genera recognised in Caesalpin-
ioideae as a whole.

Across the non-mimosoid Caesalpinioideae generic delimitation has also seen
many changes. The most complex problems have been, without doubt, in the Cae-
salpinia Group and, especially, the genus Caesalpinia L. s.1. (Polhill and Vidal 1981;
Lewis 1998; Gagnon et al. 2016), but these have now largely been resolved with the
phylogenetically-based generic system of Gagnon et al. (2016), which recognised 26
genera, leaving just one residual generic problem in that group (see Clark et al. 2022).

Since LPWG (2017), two genera of Caesalpinioideae have been synonymised (i.e.
Cathormion Hassk. within Albizia (Koenen et al. 2020b) and Lemuropisum H. Perrier
within Delonix Raf. (Babineau and Bruneau 2017)) and six new genera have been
segregated or resurrected (i.e. Lachesiodendron P.G. Ribeiro, L.P. Queiroz & Luckow
(Ribeiro et al. 2018), Parasenegalia and Pseudosenegalia (Seigler et al. 2017), Jupun-
ba Britton & Rose and Punjuba Britton & Rose (Soares et al. 2021) and Robrichia
(Barneby & J.W. Grimes) A.R.M. Luz & E.R. Souza (de Souza et al. 2022a)), bringing
the current tally of Caesalpinioideae genera to 152, of which 90 are mimosoids.

Despite this rapid on-going progress to align genera with clades in recent years, ge-
neric delimitation across Caesalpinioideae and, especially, the mimosoid clade, remains
in a state of considerable flux and there is evidence to suggest that several more genera
are non-monophyletic: Prosopis (Catalano et al. 2008), Dichrostachys (DC.) Wight &
Arn. (Hughes et al. 2003; Luckow et al. 2005), Balizia Barneby & ].W. Grimes (Iganci
et al. 2016; Koenen et al. 2020b), Zygia P. Browne (Ferm et al. 2019), Entada Adans.
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(Luckow et al. 2003), Caesalpinia (Gagnon et al. 2016), Albizia, Senegalia and Leuc-
ochloron Barneby & J.W. Grimes (Koenen et al. 2020b; Fig. 1). One factor that has un-
doubtedly contributed significantly to this widespread generic non-monophyly is the
potentially pervasive homoplasy of multiple morphological characters previously used
for generic delimitation, as well as reliance on only a few characters for delimiting taxa.
This has led to tribes defined solely on stamen number and fusion into a staminal tube
(Bentham 1875) and ‘fruit genera, such as Calliandra, which was defined by Bentham
(1875), based on its characteristic elastically dehiscent fruit. All mimosoid tribes and
the genus Calliandra have since been shown to be non-monophyletic and their defin-
ing characters shown to have evolved multiple times across the subfamily (e.g. LPWG
2013; Barneby 1998). Such over-reliance on a small number of potentially homopla-
sious morphological characters, such as fruit type, connation and number of stamens
and floral heteromorphy have likely repeatedly misled classification and resulted in
widespread generic non-monophyly.

Another issue has been delimitation of the mimosoid clade with on-going uncer-
tainties surrounding the inclusion or not of certain genera (Luckow et al. 2000, 2003;
Manzanilla and Bruneau 2012). Although lacking valvate petals in bud (the putative
synapomorphy of mimosoids), morphologically some members of the informal Di-
morphandra group of Polhill and Vidal (1981) and Polhill (1994) show many similari-
ties to mimosoids, with small, often numerous, regular flowers arranged in spikes or
spiciform racemes, the hypanthium contracted, the anthers sagittate and introrse, the
stamens becoming the most conspicuous and attractive part of the flower and pollen in
tetrads in a few genera (Diptychandra Tul. and Dinizia Ducke) with possible affinities
to the polyads that characterise many mimosoid lineages (Banks et al. 2010). These
mimosoid-like features have prompted inclusion of some genera such as Dinizia in the
mimosoid clade in the past (e.g. Burkart 1943; Luckow et al. 2000). Although none of
these mimosoid-like genera has flowers with petals valvate in bud, previous molecular
phylogenetic analyses have unexpectedly placed two Dimorphandra group genera in
the mimosoid clade: Chidlowia Hoyle and Sympetalandra Stapf. The monospecific west
African genus Chidlowia was placed with high support within the mimosoid clade in
analyses based on few genetic markers (Manzanilla and Bruneau 2012; LPWG 2017),
a result which was confirmed by the phylogenomic analyses of Koenen et al. (2020b;
Fig. 1). The small Asian genus Sympetalandra was also recovered in the mimosoid clade
in the matK tree of LPWG (2017), but was not sampled by Koenen et al. (2020b). Al-
though support for the mimosoid clade is robust and the branch subtending that clade
is long (Koenen et al. 2020b; Fig. 1), such that the monophyly of mimosoids is not in
doubt, not all Caesalpinioideae genera have been included in phylogenomic analyses.
By sampling widely and densely across Caesalpinioideae as a whole, we aim to further
resolve which genera are placed in the mimosoid clade.

Several other issues have hindered a more complete understanding of the phylog-
eny and tribal / generic classification of subfamily Caesalpinioideae. First, the legacy
of the traditional subfamily classification meant that taxon sampling in previous phy-
logenetic studies focused primarily on either old sense Caesalpinioideae (i.e. the grade
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starting point for this study.
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subtending mimosoids (the ‘Caesalpinieae grade’ of Manzanilla and Bruneau 2012)
of new sense Caesalpinioideae (Bruneau et al. 2008; Manzanilla and Bruneau 2012)),
or on the mimosoid clade (e.g. Luckow et al. 2003, 2005; Koenen et al. 2020b). Few
studies, apart from the family-wide analysis of plastid maK sequences (LPWG 2017),
have sampled densely and widely across Caesalpinioideae as a whole. Second, several
parts of the Caesalpinioideae phylogeny have been recalcitrant to phylogenetic resolu-
tion using traditional DNA sequence loci, most notably along the backbone of the
grade subtending the mimosoid clade (Bruneau et al. 2008; Manzanilla and Bruneau
2012; LPWG 2017) and across the large ingoid clade sensu Koenen et al. (2020b).
Third, lack of dense pantropical sampling of taxa in previous phylogenies means that
the monophyly of several key genera with wide pantropical distributions, such as the
‘dustbin genus’ Albizia, has not been adequately tested and that possible sister-group
relationships between New and Old World groups that are relevant to delimitation of
genera may have been missed.

More robust foundations to overcome these difficulties were established by Koenen
etal. (2020b) in a phylogenomic study of the mimosoid clade. By developing a clade-
specific bait set (Mimobaits) for targeted enrichment of 964 nuclear genes, Koenen et
al. (2020b) opened the way for generating DNA sequence datasets orders of magni-
tude larger than those used previously, thereby providing much enhanced phylogenetic
resolution. Using these new data, Koenen et al. (2020b) established a new phylog-
enomic framework and recognised three large informally named higher-level clades
each successively nested within Caesalpinioideae (Fig. 1). The mimosoid clade, core
mimosoid clade and ingoid clade were all strongly supported by high proportions of
gene trees and subtended by long branches. In addition, a set of 15 smaller informally
named subclades across mimosoids were proposed by Koenen et al. (2020b) (Fig. 1)
to replace the previously defined tribes and informal groups and alliances, almost all
of which have been shown by numerous studies to be non-monophyletic (Luckow et
al. 2003; LPWG 2013, 2017; Koenen et al. 2020b). Furthermore, although the AMi-
mobairs bait set was designed based on RNA-seq data from species of four mimosoid
genera and used initially for the mimosoid clade, the results of Koenen et al. (2020b)
suggested that they work well across the non-mimosoid Caesalpinioideae, opening the
way to potentially sequence these genes across the subfamily as a whole. The Koenen
et al. (2020b) study also further revealed or confirmed the non-monophyly of several
genera, but it lacked sufficient taxon sampling to fully test generic monophyly and
sampling was largely restricted to the mimosoid clade. Here, we capitalise on these
foundations using a slightly modified version of the Mimobaits gene set covering 997
nuclear genes to extend taxon sampling to 420 species from 147 of the 152 genera and
establish a robust phylogenomic hypothesis for subfamily Caesalpinioideae as a whole.

This new phylogeny provides the basis for testing the monophyly of genera (the
main focus of this paper and of this Special Issue Advances in Legume Systematics (ALS)
14, Part 1), establishing a new higher-level classification of the subfamily (the focus
of ALS 14, Part 2) and for downstream analyses of biogeography, trait evolution and
diversification (de Faria et al. 2022; Ringelberg et al. 2022). Caesalpinioideae pro-
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vides an excellent clade for investigating evolutionary diversification and phylogenetic
turnover across the lowland tropics (Lavin et al. 2004; Gagnon et al. 2019; Ringel-
berg et al. 2020, 2022), as well as the evolution of several prominent plant functional
traits including compound leaves, armature, extrafloral nectaries and ant associations
(Marazzi et al. 2019), agglomeration of pollen into polyads, plant growth forms (Gag-
non et al. 2019), floral morphology and pollination syndromes, fruit morphology and
seed dispersal syndromes and the ability to form nitrogen-fixing root nodule symbiosis
(Sprent et al. 2017; de Faria et al. 2022). However, all of these opportunities require a
robust and well-sampled subfamily-wide phylogeny of Caesalpinioideae. In turn, some
of these traits have been used for generic delimitation in the past and, in this paper,
we also evaluate a handful of such traits in a preliminary way by mapping them on to

the phylogeny.

Methods

Phylogeny: taxon and gene sampling, and tree building

To test generic monophyly as thoroughly as possible, we sampled taxa to encompass
known or suspected cases of generic non-monophyly, as well as sets of representative
species spanning the root nodes of larger genera in Caesalpinioideae (Suppl. mate-
rial 1). The final phylogenomic dataset comprised 420 Caesalpinioideae taxa cover-
ing 147 of the 152 genera. The five missing genera are: Stenodrepanum Harms, the
monospecific sister genus of Hoffinannseggia Cav. in the Caesalpinia Group (Gagnon
etal. 2016); Hultholia Gagnon & G.P. Lewis, another monospecific genus in the Cae-
salpinia Group (Gagnon et al. 2016); Microlobius C. Presl, which is also monospecific
and nested within the mimosoid genus Stryphnodendron Mart. (Simon et al. 2016;
Ribeiro et al. 2018; Lima et al. 2022); Vouacapoua Aubl., a genus of three species,
whose phylogenetic placement is uncertain, but most likely falls into the Cassia clade
(Bruneau et al. 2008; LPWG 2017); and Prerogyne Tul., another monospecific genus
whose placement has been uncertain (Manzanilla and Bruneau 2012; Zhang et al.
2020), but which is probably sister to all Caesalpinioideae, excluding the Arcoa and
Umtiza clades (Zhao et al. 2021). In total, 89 of 90 mimosoid genera and 58 of the 62
non-mimosoid Caesalpinioideae genera were sampled.

We sequenced a set of 997 nuclear genes specifically selected for phylogenomic
analyses of the mimosoid clade (Koenen et al. 2020b) via targeted enrichment and hy-
brid capture. This Hybseq approach has quickly become the method of choice to gen-
erate phylogenomic data because of its versatility and relatively low cost (e.g. Nicholls
et al. 2015; Barrett et al. 2016; Hart et al. 2016; Dodsworth et al. 2019; Johnson et
al. 2019; Koenen et al. 2020b). Library preparation, hybrid capture, enrichment and
sequencing were performed by Arbor Biosciences (previously MYcroarray; Ann Arbor,
USA). Full details about how the new Caesalpinioideae phylogeny was inferred are
presented by Ringelberg et al. (2022), but briefly, HybPiper (Johnson et al. 2016)
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was used to assemble the loci and the pipeline of Yang and Smith (2014) was used
for data cleaning and orthology assessment. Various phylogenetic methods, includ-
ing the multi-species coalescent approach using individual gene trees with ASTRAL
(Zhang et al. 2018), Maximum Likelihood based on concatenated alignments with
RAXML (Stamatakis 2014) and Bayesian gene jack-knifing with PhyloBayes (Lartillot
et al. 2013), were used to infer ten nuclear species trees, which also differ in whether
nucleotide or amino acid sequences were used and in the way orthology was assessed
(Ringelberg et al. 2022). In addition, a chloroplast phylogeny was inferred using off-
target plastid sequences, bringing the total number of phylogenies to eleven. Topologi-
cal congruence between these eleven different phylogenies was assessed. Support for
relationships was expressed in numbers of supporting and conflicting gene trees using
PhyParts (Smith et al. 2015) and QuartetScores (Zhou et al. 2020) (Figs 2—12), rather
than conventional bootstrap or posterior support values that are known to be inflated
in large phylogenomic datasets (Rokas and Carroll 2006; Pease et al. 2018).

Character evolution

To explore evolution of morphological traits that have been important for generic de-
limitation, we scored variation in armature, aspects of floral heteromorphy and mode
of fruit dehiscence and mapped their distribution across the Caesalpinioideae phy-
logeny. Our goal was to highlight how an over-reliance on broadly-defined character
complexes or functional traits may have misled classification in the past, rather than to
perform detailed reconstructions of character evolution through time or to thoroughly
assess the homology of various character states.
The three character complexes and their states were defined as follows:

* armature (six states): unarmed; nodal or internodal prickles on stem; stipular
spines; nodal axillary thorns, including the axillary inflorescence axes which are modi-
fied into spines in Chloroleucon (Benth.) Britton & Rose; spinescent shoots.

* floral heteromorphy (three states): homomorphic, i.e. with no conspicuous
modification or variation amongst flowers within an inflorescence (here we include
inflorescences that do not show any conspicuous phenotypic variation beyond the
very common occurrence of variable proportions of male and bisexual flowers within
inflorescences of many mimosoid genera); heteromorphic 1 = basal flowers of the in-
florescence with showy staminodia; heteromorphic 2 = the central flower (or flowers)
enlarged/sessile cf. the peripheral (sometimes pedicellate) flowers.

*  pod dehiscence (six states): indehiscent; inertly dehiscent along one or both su-
tures; explosively dehiscent, the woody valves twisting and splitting along both sutures
along whole length of pod simultaneously; elastically dehiscent from the apex, the valves
recurving, but not laterally twisting; craspedium, fruits breaking up into free-falling
one-seeded articles leaving a persistent replum or whole valve breaking away intact from
replum (valvately dehiscent); lomentiform fruit, the valves readily cracking between the
seeds into one-seeded articles, taken here to include crypto-lomentiform fruits.



12 Jens J. Ringelberg et al. / PhytoKeys 205: 3-58 (2022)

Data were assembled from taxonomic monographs, revisions and floras. Character
evolution was simulated across the phylogeny using the ‘make.simmap’ function in the
phytools (Revell 2012) R (R Core Team 2022) package, with 300 independent simula-
tions and a ‘symmetrical rates’ (SYM) model. In each analysis, the character complex
of interest (i.e. armature, floral heteromorphy and pod dehiscence) was treated as a
single character with multiple states. A rooted phylogeny, without outgroups, was used
for the analyses. The root character state was assigned an uninformed prior (i.e. each
character state had the same initial probability of occurrence).

Data availability

A tree file of the ASTRAL phylogeny based on the single-copy genes (depicted in
Figs 2—12) is included as online Suppl. material 4. In this tree file, all taxon names
have been updated to reflect taxonomic changes made in all the entries in Advances in
Legume Systematics 14 Part 1.

Results

Phylogenomics

For full results of the sequencing, orthology assembly and phylogenetic inference, see
Ringelberg et al. (2022). Here a brief overview is provided.

Hybrid capture and sequencing yielded a large phylogenomic dataset with little
missing data: the concatenated nucleotide alignment of the 821 single-copy nuclear
genes (a subset of all 997 genes, see below) contains 944,871 sites, 824,713 alignment
patterns (i.e. an indication of the phylogenetic informativeness of the alignment, de-
termined by RAXML) and only 11.88% gaps. The ten nuclear species trees that were
inferred using different phylogenetic methods are well-supported in terms of gene tree
congruence measures (Figs 2—12) and largely congruent with each other. The few topo-
logical differences between different phylogenies typically involve only small numbers
of species within relatively recent radiations, or deeper putative polytomies such as
along the backbone of the ingoid clade, characterised by lack of phylogenetic signal
across almost all genes (Koenen et al. 2020b), or the backbone of the Archidendron
clade (Fig. 8), characterised by both lack of signal and high conflict amongst gene trees.
These minor topological differences do not affect any of the findings of generic non-
monophyly discussed below.

The plastid phylogeny (Suppl. material 3) differs more substantially from the
nuclear species trees, reflecting the fact that nuclear and chloroplast genomes have
unique and sometimes conflicting evolutionary histories (Bruun-Lund et al. 2017;
Lee-Yaw et al. 2019; Rose et al. 2021). Cytonuclear discordance affects the mono-
phyly of Senegalia Raf. (Terra et al. 2022), Archidendron E. Muell. (Brown et al.
2022), Dimorphandra Schott, the placement of Desmanthus balsensis ].L. Con-
treras (Hughes et al. 2022b) and whether Zygia inundata (Ducke) H.C. Lima ex
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(continued in Figure 3)

Genus non-monophyletic

13

Figure 2. Phylogeny of Caesalpinioideae, part 1 (continued in Figs 3—12). Left part of figure shows complete
Caesalpinioideae phylogeny with highlighted in red the part shown in detail on the right. Depicted phylog-
eny is the ASTRAL (Zhang et al. 2018) phylogeny based on 821 single-copy nuclear gene trees, with branch
lengths expressed in coalescent units and terminal branches assigned an arbitrary uniform length for visual

clarity. Genera resolved as (potentially) non-monophyletic are highlighted and clades recognised by Koenen et

al. (2020b) are labelled. Support for relationships is based on gene tree conflict: pie charts show the fractions
of supporting and conflicting gene trees per node calculated using PhyParts (Smith et al. 2015), with blue
representing supporting gene trees, green gene trees supporting the most common alternative topology, red

gene trees supporting further alternative topologies and grey gene trees uninformative for this node. Numbers
above nodes are Extended Quadripartition Internode Certainty scores calculated with QuartetScores (Zhou
etal. 2020). Numbers below nodes are the outcome of ASTRALSs polytomy test (Sayyari and Mirarab 2018),
which tests for each node whether the polytomy null model can be rejected. Only non-significant (i.e. > 0.05)

scores are shown, i.e. only for nodes that are better regarded as polytomies according to the test.
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Figure 3. Phylogeny of Caesalpinioideae (continued). See Figure 2 for caption.

Barneby & J.W. Grimes and Z. sabatieri Barneby & J.W. Grimes form the sister
clade of Inga or a grade subtending /nga.

Hereafter the ASTRAL phylogeny based on the subset of 821 single-copy nuclear
gene trees is used as the ‘reference’ Caesalpinioideae backbone phylogeny (Figs 2—12).
We use this particular tree over the plastome phylogeny because the nuclear dataset is
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core mimosoids (continued in Figure 5)
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Figure 4. Phylogeny of Caesalpinioideae (continued). See Fig. 2 for caption.

15

Xylia clade

Entada

clade

based on hundreds of independent loci and contains considerably more sites, taxa and
fewer gaps, while the plastome phylogeny is based on a single non-recombining locus.
The nuclear trees, therefore, likely better represent an approximation of the true evolu-
tionary history of Caesalpinioideae than the phylogeny based on maternally inherited
plastid data. Of the various nuclear trees, we select the ASTRAL phylogeny because we
find extensive conflict amongst individual gene trees in certain parts of the phylogeny
(Figs 2-12), which violates the central assumption of the concatenation model (Jiang et
al. 2020) and because the multi-species coalescent model has been shown to consistently



16 Jens J. Ringelberg et al. / PhytoKeys 205: 3-58 (2022)

— Cylicodiscus gabunensisSosef 645A (WAG)

«
o 0
P e, . . o5 Indopiptadenia oudhensisAdhikari, Poulsen, and Parmar BAG31 (E)
i, o8 .
i
Lh o5 Xerocladia viridiramis Kolberg and Tholkes HK2493 (WIND)
L‘L‘\" 0.84

001

“!47— Lemurodendron capuroniiKoenen 435 (Z)

Neptunia oleraceaKoenen 283 (Z)

Leucaena trichandraHughes 1128 (FHO)

o051 o55— Schleinitzia megaladeniaRamos & Edafio 46708 (P)

02— Schleinitzia insularum Rinehart 17441 (K)

Schleinitzia novoguineensis Chaplin 57 84 (FHO)

&l ®
L Ovsrantus baersirshes 125 £10)

Kanaloa kahoolawensis Lorence 7380 (PTBG)

o5~ Mimozyganthus carinatusHughes 2476 (FHO)

*
Mimosoid | |~
clade

core ‘
mimosoids Fu

076— Prosopidastrum globosumLuckow s.n. (BH)

Piptadeniopsis lomentiferalLuckow 4505 (BH)

— Calliandropsis nervosaHughes 1784 (K)

N .
e e ¢
clade w{ ‘ A (JRAU)

& 004 o15— Gagnebina commersonianaKoenen 374 (G, K)

Dichrostachys clade

r (continued in Figure 6)

= Genus non-monophyletic Genus possibly non-monophyletic

Figure 5. Phylogeny of Caesalpinioideae (continued). See Fig. 2 for caption.

outperform the concatenation model on a range of phylogenomic datasets (Jiang et al.
2020). Our analyses reveal that different approaches to orthology assessment have a very
minor impact on the final Caesalpinioideae phylogeny, likely because the vast majority
of nuclear genes in our dataset are single-copy (i.e. 821 of 997) (see Ringelberg et al.
2022 for details). Nevertheless, how to deal with multi-copy genes is a contentious topic
in phylogenetics (Yang and Smith 2014; Moore et al. 2018; Karimi et al. 2019) and we,
therefore, focus on the ASTRAL phylogeny based on just the 821 single-copy genes.
The resultant ASTRAL phylogeny is, in general, robustly supported across the ma-
jority of nodes using measures of gene tree support and conflict (Figs 2—12). However,
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Figure 6. Phylogeny of Caesalpinioideae (continued). See Fig. 2 for caption.

there are also some specific parts of the phylogeny which show high levels of gene tree
conflict and/or lack of phylogenetic signal across large fractions of genes, which appears
to be a feature of most phylogenies based on large phylogenomic datasets (Salichos and
Rokas 2013; Wang et al. 2019; Jiang et al. 2020; Koenen et al. 2020a,b; Yang et al.
2020). In most cases, the primary source of gene tree conflict is limited signal in indi-
vidual gene trees rather than the presence of strongly-supported alternative topologies
amongst the gene trees (Figs 2-12, Koenen et al. 2020b), suggesting that the conflict
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Figure 7. Phylogeny of Caesalpinioideae (continued). See Fig. 2 for caption.

often has methodological rather than biological causes and implying that the presence
of conflict per se is no reason for doubts about the recovered Caesalpinioideae topology.
However, some parts of the phylogeny with high levels of gene tree conflict or lack of
signal may be better viewed as potential polytomies, including the previously identified
putative hard polytomy subtending a set of six or seven lineages along the backbone of
the ingoid clade (Koenen et al. 2020b) and a putative polytomy across the backbone of
the large Archidendron clade (see Appendix 1). These parts of the phylogeny showing
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Figure 8. Phylogeny of Caesalpinioideae (continued). See Fig. 2 for caption.
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Archidendron
clade

high gene tree conflict affect only a few decisions about generic delimitation, most nota-
bly across the grade comprising Senegalia and allies (Fig. 7; Terra et al. 2022) and across
the backbone of the Archidendron clade (Fig. 8; Brown et al. 2022).

All the informally named clades of Koenen et al. (2020b; Fig. 1) are here confirmed
with robust support in this new phylogeny (Figs 2—12), including the mimosoid clade
that is robustly supported and subtended by a long branch (Fig. 4). Our results confirm
placement of Chidlowia and Sympetalandra within the mimosoid clade and Dinizia
outside the mimosoid clade, with high support (Fig. 4). Higher-level relationships that
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Figure 9. Phylogeny of Caesalpinioideae (continued). See Fig. 2 for caption.

form the basis for the clade- and tribal-based classification of Caesalpinioideae pre-
sented in “Advances in Legume Systematics 14, Part 27, are not further discussed here.

Generic non-monophyly

Twenty-two genera were recovered as non-monophyletic or were nested within anoth-
er genus and, therefore, likely require generic re-delimitation (Figs 2-12; Appendix 1).
In addition, based on our results, the taxonomic status of Gagnebina Neck. ex DC.,
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Figure 10. Phylogeny of Caesalpinioideae (continued). See Fig. 2 for caption.

Sphinga Barneby & ].W. Grimes and Ebenopsis Britton & Rose, each represented here
by a single taxon and nested in clades with complex generic relationships, require ad-
ditional species sampling. Furthermore, although Archidendron species form a clade
(Fig. 8), the genus is not supported as monophyletic in a substantial fraction of the in-
dividual gene trees (Fig. 8), nor in the plastid tree (Suppl. material 3) (see Brown et al.
2022). Overall, our results therefore show that 14(~17)% of the 152 Caesalpinioideae
genera require re-delimitation and taxonomic updating. Only two of these genera are
non-mimosoid Caesalpinioideae: Dimorphandra Schott and Caesalpinia. Almost all
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Figure 1 1. Phylogeny of Caesalpinioideac (continued). See Fig. 2 for caption.

the non-monophyly issues are, therefore, in the mimosoid clade, where 22(-27)% of
the 90 genera will require name changes.

Appendix 1 lists all (potentially) non-monophyletic genera with notes and point-
ers to papers in this Special Issue that discuss these genera and, in many cases, propose
nomenclatural changes that resolve many of the non-monophyly issues revealed in
our analyses. In some cases, it is clear that formal taxonomic re-circumscription must
await more densely-sampled phylogenies and detailed morphological analyses. It is
also important to note that, unless explicitly stated otherwise, the reported generic

non-monophyly is recovered in all trees (i.e. the nuclear ASTRAL, RAXxML and Phy-
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Figure 12. Phylogeny of Caesalpinioideae (continued). See Fig. 2 for caption.

loBayes species trees and chloroplast phylogeny) with high support values expressed
and assessed in terms of numbers or fractions of supporting or conflicting genes.

Character evolution

Armature, types of inflorescence heteromorphy and pod dehiscence type each show
high levels of homoplasy (Figs 13—15, Table S2) with all types of armature, floral het-
eromorphy and pod dehiscence hypothesised to have evolved multiple times.
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Discussion

Generic non-monophyly

The new Caesalpinioideae phylogeny (Figs 2—12) reveals extensive generic non-
monophyly: 22 genera are non-monophyletic or nested within another genus and
four other genera could likely also be non-monophyletic (Appendix 1). Notably, there
are just two non-monophyletic genera (3% of the 62) across the non-mimosoid Cae-
salpinioideae, while 20 (to 24) mimosoid genera (i.e. 22(-27)% of 90 genera) are
non-monophyletic. The discovery of such a high level of generic non-monophyly in
the mimosoid clade is likely attributable to the denser taxon sampling in mimosoids
than non-mimosoids in our analyses; the greater species-richness of mimosoids, which
account for ca. 75% of the ca. 4,600 Caesalpinioideae species (LPWG 2017), but
only 59% of the 152 genera, indicating that, on average, mimosoid genera are more
species-rich and, therefore, more likely to have monophyly issues than non-mimosoid
Caesalpinioideae genera; the fact that the Caesalpinia Group, the most problematic
clade of non-mimosoid Caesalpinioideae in terms of generic delimitation, was already
largely resolved by Gagnon et al. (2016), further reducing the likelihood of non-
monophyly issues across non-mimosoid Caesalpinioideae; and finally, the continued
legacy of Bentham’s broadly circumscribed mimosoid genera which has still not been
fully resolved. For example, Acacia, which as indicated earlier, was once a pantropical
genus with over 1,400 species (Miller and Seigler 2012) and now comprises seven
genera, yet one of these genera, Senegalia, is here recovered as non-monophyletic
(Fig. 7) and further subdivision of Senegalia seems likely (Terra et al. 2022). Similarly,
Calliandra once had a pantropical distribution until Barneby (1998) restricted it to
the New World (de Souza et al. 2013). However, not all Old World Calliandra species
have yet been assigned to other genera and Calliandra, therefore, also remains non-
monophyletic (Fig. 7). Finally, Albizia, the last mimosoid ‘dustbin genus’ (Barneby
and Grimes 1996; Brown 2008; Koenen et al. 2020b) is here confirmed to be non-
monophyletic in line with previous findings (Koenen et al. 2020b) (Figs 7-11), but
with two previously unsampled Neotropical species each representing additional evo-
lutionary lineages (Terra et al. 2022; Koenen 2022b). Nevertheless, most African,
Madagascan and Asian Albizia species do form a single clade (Fig. 10; Koenen et al.,
unpublished data), while most Neotropical species are also in a single clade (Aviles et
al. 2022) (Fig. 9, see Appendix 1).

Morphological homoplasy

Given the extensive re-arrangements of genera in Caesalpinioideae over the last two
decades, the question arises why such a significant fraction of genera is still non-mono-
phyletic in these new phylogenomic analyses. We identify two main reasons for this.
First, extensive morphological homoplasy has misled generic delimitation and second,
lack of pantropical taxonomic synthesis and phylogenetic sampling have resulted in
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failure to identify clades that span the Old World and New World or, conversely,
amphi-Atlantic genera that are non-monophyletic, i.e. potential trans-continental con-
nections and disconnects.

First, and most importantly, the likely extent of homoplasy of morphology and
functional traits across Caesalpinioideae is only now starting to be revealed using this
new phylogeny (Figs 13—15; de Faria et al. 2022). Here, we reconstructed hypotheses
for the evolutionary trajectories of three trait syndromes — armature, mode of fruit
dehiscence and aspects of floral heteromorphy — to demonstrate the extent of homo-
plasy and to show how the repeated evolution of distinctive types of, for example, fruit
dehiscence has misled generic delimitation.

Fruits are highly diverse across Caesalpinioideae reflecting adaptations for hydro-
chory, anemochory, endozoochory, ornithochory, and myrmecochory, as well as sev-
eral forms of mechanical seed dispersal via explosively, elastically and inertly dehiscent
fruits. Here, we show that fruit dehiscence type shows extensive homoplasy across the
mimosoid clade, with repeated evolution of, for example, pods elastically dehiscent
from the apex, craspedia and lomentiform fruits (Fig. 13). It is now clear that repeated,
potentially convergent evolution of fruit types has repeatedly misled generic delimita-
tion and provided the basis for ‘fruit genera’ that have subsequently been shown to be
non-monophyletic.

For example, as pointed out by Barneby (1998), the only character uniting
Bentham’s (1875) broadly circumscribed pantropical Calliandra was the elastically
dehiscent fruit, opening from the apex with the valves recurving, but not laterally
twisting (Fig. 13a—e). Just how misplaced this reliance on fruit type as a generic syna-
pomorphy was, is evident from the long parade of new genera segregated from Ca/-
liandra, most of them in the two decades after Barneby (1998) restricted the genus to
just the New World species: Zapoteca H.M. Hern. (Herndndez 1986), Viguieranthus
Villiers (Du Puy et al. 2002), 7hailentadopsis Kostermans (Lewis and Schrire 2003),
Afrocalliandra E.R. Souza & L.P. Queiroz (de Souza et al. 2013) and Sanjappa E.R.
Souza & M.V. Krishnaraj (de Souza et al. 2016). This procession is still incomplete
given that Calliandra is still non-monophyletic (Fig. 7), pending phylogenetic place-
ment of the Asian Calliandra umbrosa (Wall.) Benth. (see de Souza et al. 2016) and
an, as yet, undescribed species (Fig. 7), the last remaining of the species excluded from
Calliandra by Barneby (1998) that have not yet been placed in a segregate genus. It is
clear that the distinctive ‘Calliandra pod’ has evolved at least six times independently
across Caesalpinioideae (Fig. 13) and occurs in at least 12 phylogenetically scattered
genera including Jaqueshuberia Ducke, Bussea Harms, Pseudoprosopis Harms, some
species of Dichrostachys (DC.) Wight & Arn., Alantsilodendron Villiers, Calliandropsis
H.M. Hern. & P. Guinet, Calliandra, Zapoteca, Viguieranthus, Sanjappa, Afrocallian-
dra and a small subset of species of Acacia. Of course, it is possible that more detailed
anatomical investigation of these morphologically and functionally similar fruits will
reveal anatomical differences that show that the homology of this fruit type is mis-
placed, but the structure of the pod valves and raised sutures of most of these are
remarkably similar (Fig. 13a—e).
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Pod dehiscence type

Indehiscent
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Figure 13. Evolution of fruit dehiscence types across the mimosoid clade. Character states were defined as:
indehiscent; inertly dehiscent along one or both sutures; explosively dehiscent, whereby the woody valves twist
and split along both sutures along whole length of pod simultancously; elastically dehiscent from the apex,
the valves recurving, but not laterally twisting; craspedium, i.e. fruits breaking up into free-falling one-seeded
articles leaving a persistent replum or whole valve breaking away intact from replum (valvately dehiscent);
lomentiform fruit, i.e. the valves readily cracking between the seeds into one-seeded articles, taken here to
include crypto-lomentiform fruits. Branch lengths are not informative in this figure. Photos a—e elastically
dehiscent a Acacia argyraea Tindale b Calliandra prostrata Benth. ¢ Calliandropsis nervosa (Britton & Rose)
H.M. Hern. & P Guinet d Alantsilodendron mabafalense (R. Vig.) Villiers € Zapoteca portoricensis (Jacq.)
H.M. Hern f=h craspedium f Entada polystachya (L.) DC. g Lysiloma tergeminum Benth. h Mimosa montana
Kunth. var. sandemanii Barneby i-l lomentiform i Albizia moniliformis (DC.) E. Muell. j Albizia subdimid-
iata (Splitg.) Barneby & J.W. Grimes k Albizia pistaciifolia (Willd.) Barneby & J.W. Grimes | Prosopidas-
trum globosum (Gillies ex Hook. & Arn.) Burkart. Photos a Bruce Maslin b, ¢, e=h Colin Hughes d http://
clubbotatoliara.e-monsite.com/pages/posters-films-rapports/photos.html i Garry Sankowsky http://www.
rainforestmagic.com.au j Marcelo Simon k Xavier Cornejo | https://www.floramendocina.com.ar.


http://clubbotatoliara.e-monsite.com/pages/posters-films-rapports/photos.html
http://clubbotatoliara.e-monsite.com/pages/posters-films-rapports/photos.html
http://www.rainforestmagic.com.au
http://www.rainforestmagic.com.au
https://www.floramendocina.com.ar

Phylogenomics of Caesalpinioideae: generic re-delimitation 27

Inflorescence type
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Figure 14. Evolution of types of floral heteromorphy across the mimosoid clade. Character states were de-
fined as: homomorphic, i.e. with no conspicuous modification or variation amongst flowers within an inflores-
cence (here we include inflorescences that can comprise proportions of male and bisexual flowers, but no other
more conspicuous variation); heteromorphic 1 = basal flowers of the inflorescence with showy staminodia; Ae-
eromorphic 2 = lowers dimorphic within an inflorescence, the central flower (or flowers) enlarged/sessile cf. the
peripheral (sometimes pedicellate) flowers. Branch lengths are not informative in this figure. Photos a—h heter-
omorphic 1 a Neptunia plena (L.) Benth. b Dichrostachys cinerea (L.) Wight & Arn. € Dichrostachys myriophylla
Baker d Gagnebina pterocarpa (Lam.) Baill. e Dichrostachys bernieriana Baill. f Dichrostachys akataensis Villiers
g Parkia bahiae H.C. Hopkins h Parkia nitida Miq. il heteromorphic 2 i Pseudosamanea guachapele (Kunth)
Harms j Albizia obliquifoliolata De Wild. k Hydrochorea corymbosa (Rich.) Barneby & J.W. Grimes | Albizia
grandibracteata Taub. Photos a, b, g, i Colin Hughes ¢, k, I Erik Koenen d Melissa Luckow e, f Dave Du Puy
h Giacomo Sellan https://identify.plantnet.org/the-plant-list/observations/1012799991 j Jan Wieringa.
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There are several other examples of classifications and especially genera being
misled by parallel evolution of fruit types. For example, the polyphyly of the genus
Enterolobium Mart. (de Souza et al. 2022a; Figs 10-11) was unexpected because the
two clades of Enterolobium species share the distinctive indehiscent thickened and
curled ‘ear pod’ fruit type. Similarly, it also seems clear that septate lomentiform
fruits with valves readily cracking between the seeds and breaking up into one-seeded
articles have also evolved multiple times (Fig. 13), often within genera (e.g. Capuron
1970; Aviles et al. 2022; Koenen 2022a; Soares et al. 2022) associated with hydro-
chory in species adapted to grow in seasonally inundated habitats and this has im-
pacted on generic delimitation. For example, Barneby and Grimes (1996) separated
their newly-segregated genera Balizia and Hydrochorea Barneby & ].W. Grimes on
fruit types, yet it is clear that Hydrochorea is nested within a paraphyletic Balizia (Fig.
9; Soares et al. 2022) and that the distinctive lomentiform fruits of Hydrochorea are
derived from non-lomentiform indehiscent or follicularly dehiscent pods within this
clade (Aviles et al. 2022; Soares et al. 2022). This prevalence of homoplasy associated
with fruit types across the mimosoid clade matches that seen across other legume
clades (e.g. in subfamily Papilionoideae; Geesink 1984; Hu et al. 2000; Lavin et al.
2001) suggesting that the late developmental stages of the legume pod and associated
legume seed dispersal syndromes are prone to convergent evolution, as previously
suggested (Geesink 1984; Hu et al. 2000).

Of course, homoplasy per se in no way negates the value and importance of mor-
phology for classification, but instead prompts re-evaluation of homology and the util-
ity of specific morphological characters via reciprocal illumination with new molecular
phylogenetic evidence. For example, armature is also homoplasious across Caesalpin-
ioideae with repeated evolution of stipular spines, nodal and internodal prickles, axil-
lary thorns and spinescent shoots (Fig. 15). While armature has been little used as
the basis for defining genera because vegetative characters were generally downplayed
compared to floral and fruit characters (e.g. Bentham 1875; Burkart 1976), the utility
of armature for delimiting some groups within individual clades is increasingly ap-
parent. For example, the four genera segregated from the non-monophyletic Prosopis
s.1. by Hughes et al. (2022a) are diagnosed by different types of armature (Fig. 15).
Similarly, armature is an important character distinguishing the segregates of Acacia s.1.
(spinescent stipules in Vachellia, nodal and internodal prickles in Senegalia, unarmed
in Acacia s.s., Parasenegalia, Pseudosenegalia, Mariosousa and Acaciella) and the distri-
bution of prickles (nodal vs. internodal) is discussed in relation to the non-monophyly
of Senegalia (Terra et al. 2022). Similarly, the two major clades of genera that make up
the Caesalpinia Group (Figs 2 and 15) are separated by differences in armature.

Detailed phylogenetic reconstructions for other characters, based on more rigorous
and detailed anatomical assessment of homology, will undoubtedly be worthwhile, but it is
already clear that the three traits mapped here (Figs 13—15) are not exceptional in terms of
their high levels of homoplasy. Leaves also show evolutionarily labile patterns with numer-
ous repeated transitions from micro- to macrophyllidinous leaves within a large majority
of Caesalpinioideae genera. Even the more prominent leaf type innovations of bipinnate
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Mimosoid clade

Armature type

® Axillary thorns
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Figure 15. Evolution of different types of armature across Caesalpinioideae. Character states were de-
fined as: unarmed; nodal or internodal prickles on stem; stipular spines; nodal axillary thorns including modi-
fied inflorescence axes of Chloroleucon; spinescent shoots. Branch lengths are not informative in this figure.
Photos a and b axillary thorns a Parkinsonia andicola (Griseb.) Varjao & Mansano b Prosopis juliflora
(Sw.) DC. ¢, d, h internodal prickles ¢ Senegalia tamarindifolia (L.) Britton & Rose d Mimosa ophthal-
mocentra Mart. ex Benth. e spinescent shoots, Prosopis kuntzei Harms f and g stipular spines f Prosopis
ferox Griseb. g Vachellia cornigera (L.) Seigler & Ebinger h Cylicodiscus gabunensis Harms. All photos
Colin Hughes, except h William Hawthorne.

vs. pinnate leaves, presence of phyllodes and presence or absence of extrafloral leaf nectar-
ies (EFNs) are all hypothesised to be homoplasious. Multiple reversals to once-pinnate
leaves within mimosoids (/nga, Calliandra hymenaeodes (Persoon) Benth., Sanjappa cyn-
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ometroides (Bedd.) E.R. Souza & M.V. Krishnaraj and Cojoba rufescens (Benth.) Britton
& Rose), multiple origins of phyllodes (in Acacia pro parte, species of Senna including S.
phyllodinea (R. Br.) Symon and some varieties of S. artemisoides (Gaudich. ex DC.) Randell
and Mimosa species including, for example, M. extranea Benth. and M. phyllodinea Benth.
(Barneby 1991)), and multiple losses of EFNs (Marazzi et al. 2019) need to be hypoth-
esised to account for the phylogenetic distributions of these traits. Floral traits show similar
extensive homoplasy with multiple derivations of different types of floral heteromorphy
(Fig. 14), numerous switches between spikes and capitula and repeated evolution of diverse
compound inflorescence conformations (Grimes 1999), homoplasious occurrences of dif-
ferent types of anther glands (Luckow and Grimes 1997) and extremely diverse and evo-
lutionarily labile shapes and sizes of polyads, even within some genera (e.g. Hughes 1997).
As indicated above, number of stamens and their connation or not into a staminal tube,
the two androecial traits that underpinned the tribal classification of mimosoids first es-
tablished by Bentham (1875), are also homoplasious across mimosoids such that the tribal
classification has not stood the test of time and molecular phylogenetics. Plant functional
traits including nodulation (de Faria et al. 2022) and growth forms (Gagnon et al. 2019)
also show high levels of homoplasy. Indeed, it appears that nearly all Caesalpinioideae mor-
phological characters and functional traits are homoplasious, given that collectively we, as
authors familiar with Caesalpinioideae, have been unable to come up with any morpho-
logical characters or functional traits that provide robust synapomorphies subtending larger
subclades within Caesalpinioideae, due to either multiple evolutionary origins or repeated
independent losses or reversals. Perhaps the one exception to this would be the aquatic
habit in Neprunia Lour. spp., which is unique within Caesalpinioideae, although many
mimosoids are rheophytes, tolerant of seasonal flooding. This is very much in line with the
idea that vegetative, flower and fruit characters may be equally homoplasious, as found in
other legume groups such as the dalbergioid clade in Papilionoideae (Lavin et al. 2001).

Pre-eminence of certain morphological characters over others in classification of a
group and the prevalence of ‘organogenera’ (sensu Nielsen 1981) united by just a single
character, in situations where morphology is pervasively homoplasious, has been at the
root of many of the disagreements about generic delimitation in mimosoids, as pointed
out by Guinet (1981).

Trans-continental sampling

A second important reason for the extensive generic non-monophyly is the lack of pan-
tropical synthesis and integration that has been the hallmark of much taxonomic work
on Caesalpinioideae up to now and the lack of adequate pantropical sampling of taxa
in previous phylogenies. In this light, it is notable that two of the most productive and
influential mimosoid taxonomists of the twentieth century, both of whom significantly
reshaped the generic classification — Rupert Barneby and Ivan Nielsen — worked largely
independently in different geographical areas, especially on genera of the former tribe
Ingeae. While both were very much aware of the wider pantropical dimensions and
elements of their groups, Barneby focused primarily on New World mimosoids (e.g.
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Barneby 1991, 1998; Barneby and Grimes 1996, 1997), while Nielsen concentrated on
Australasian mimosoids (e.g. Nielsen 1981, 1992) and neither was fully familiar with
the details of species of the other (see e.g. Barneby and Grimes 1996), such that no pan-
tropical synthesis across mimosoids was fully achieved and New World — Old World
clades that span the Old World and New World or conversely, amphi-Atlantic genera
that are non-monophyletic, although hypothesised by both authors, were not resolved.

Our new phylogeny with its near-complete generic sampling reveals several in-
stances of Old World — New World connections and disconnects that have important
implications for generic delimitation and which were not fully apparent before. First,
the amphi-Atlantic genus Prosopis is shown to be non-monophyletic (Figs 4 and 5),
confirming earlier evidence of Catalano et al. (2008). Prosopis africana (Guill. & Perr.)
Taub. forms a monospecific lineage unrelated to the rest of Prosopis, while the remain-
ing three Old World species are sister to the Indo-Nepalese ndopiptadenia Brenan and
New World Prosopis has the Namibian-Namaqualand monospecific Xerocladia Harv.
nested within it (Fig. 5). It is, therefore, clear that Burkart’s (1976) broad trans-con-
tinental concept of Prosopis s.l., which followed Bentham’s (1842, 1875) circumscrip-
tion, is not sustainable (see Hughes et al. 2022a). A second example of disconnection
between Old and New World elements of a pantropical genus is Albizia, where species
of New World section Arthrosamanea (Britton & Rose) Barneby & J.W. Grimes form
a clade quite separate from Old World Albizia s.s. (Figs 9 and 10; Koenen et al. 2020b:
see Aviles et al. 2022). Conversely, two previously poorly understood New World — Old
World connections have been revealed. First, it is now clear that the African rainforest
species Albizia obliquifoliolata De Willd. and A. rhombifolia Benth. (previously often
referred to the genus Cathormion) are nested within the New World Balizia | Hydrocho-
rea clade (Fig. 9), which is the focus of generic re-delimitation by Soares et al. (2022).
Similarly, the recently segregated Neotropical Robrichia (formerly Enterolobium section
Robrichia — see de Souza et al. 2022a) is sister to a clade of African mainly rainforest
species (Albizia dinklagei (Harms) Harms / A. altissima Hook. f. | A. eriorhachis Harms
I A. leptophylla Harms) whose generic placements in Albizia, Cathormion or Samanea
(Benth.) Merr. have long been uncertain and neglected (Fig. 11), also prompting fur-
ther generic re-arrangement in this Special Issue by Koenen (2022a). For the first time,
the pantropical sampling employed here is more fully documenting these issues.

The mimosoid clade

We recover both Chidlowia and Sympetalandra as firmly nested in the mimosoid clade
(Fig. 4), confirming previous molecular phylogenetic studies (Chidlowia: Manzanilla and
Bruneau 2012; LPWG 2017; Koenen et al. 2020b; Sympetalandra: LPWG 2017). Of
the ten genera previously included in the Dimorphandra group (sensu Polhill and Vidal
1981), Sympetalandra, comprising five species (van Steenis 1975; Hou 1996) in the for-
ests of Malaya, Borneo, the Philippine Islands and the Lesser Sunda Islands, is unique in
having its stamens shortly joined to the petals and Chidlowia Hoyle (Hoyle 1932) from
West Africa (Sierra Leone to Ghana) stands out by having dorsifixed (rather than basi-
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fixed) anthers. These two genera are placed between the Xylia and Entada clades of the
early-diverging lineages of the mimosoid clade (Fig. 4), outside the core mimosoid clade
sensu Koenen et al. (2020b). For Chidlowia, once-pinnate leaves and relatively large
flowers with showy red petals which are strongly imbricate in bud are more suggestive
of placement outside the mimosoids. For example, Hoyle (1932) suggested an affinity
with the detarioid genus Schotia Jacq., but the regular flowers with equally-sized petals,
the showy red stamen filaments partly joined at the base (they were described as free in
the genus protologue (Hoyle 1932)) and the small campanulate, gamosepalous calyces,
support placement in the mimosoid clade. The placement of Sympetalandra in the mi-
mosoid clade, based on molecular analyses, is supported by its racemose or paniculate
inflorescences of small, essentially regular, flowers. Finally, the genus Dinizia, which on
morphological grounds has sometimes been included in mimosoids in the past (Burkart
1943), is here placed in the grade of genera directly subtending the mimosoid clade,
confirming the results of previous molecular phylogenetic studies (Luckow et al. 2005;
Bouchenak-Khelladi et al. 2010; Marazzi and Sanderson 2010; Manzanilla and Bruneau
2012; Cardoso et al. 2013; Kyalangalilwa et al. 2013; LPWG 2017; Zhang et al. 2020).

The mimosoid clade, i.e. the subfamily formerly known as the mimosoideae, was
traditionally diagnosed by petals valvate, as opposed to imbricate, in bud. Valvate petal
aestivation is mostly a reflection of whether or not the flowers are actinomorphic vs.
zygomorphic, i.e. as the flowers become radially symmetrical the petals become valvate
in bud. Across the non-mimosoid grade of Caesalpinioideae subtending the mimosoid
clade, taxa with imbricate and valvate aestivation are phylogenetically intermingled.
Although the vast majority of mimosoids do, indeed, have valvate petal aestivation,
three exceptions: Chidlowia (as indicated above), alongside Mimozyganthus Burkart
and Parkia R.Br., both of which are deeply nested within the mimosoid clade, show
imbricate petal aestivation, providing further evidence of the homoplasy of this char-
acter. Further work to characterise petal aestivation across all relevant genera of Caesal-
pinioideae is needed, but it is clear that valvate aestivation does not provide a unique
diagnostic synapomorphy for the mimosoid clade.

All other aspects of higher-level relationships are discussed in ALS14 Part 2.

Taxonomy in the age of phylogenomics

Once purely the domain of morphological analyses (e.g. Barneby and Grimes 1996,
1997; Barneby 1998), decisions on delimiting and naming taxa have increasingly been
based on genes rather than morphology (Munoz-Rodriguez et al. 2019). Employing a
large phylogenomic dataset and explicitly considering numbers of genes that support
particular generic configurations contribute to naming taxa that are more likely to be
robust to future sampling of additional species and genomic regions and, hence, to
taxonomic stability (Orthia et al. 2005; Pfeil and Crisp 2005; Humphreys and Linder
2009). However, use of ever larger phylogenomic datasets also raises questions about
how to delimit taxa and especially about how conflict amongst gene trees reflecting the
widely different evolutionary histories of different parts of the genome (e.g. Salichos and



Phylogenomics of Caesalpinioideae: generic re-delimitation 33

Rokas 2013; Wang et al. 2019; Jiang et al. 2020; Koenen et al. 2020a, b) should inform
delimitation of taxa. For example, what fraction of genes supporting a clade should be
used as a cut-off for delimiting taxa? To what extent does it matter if there are alterna-
tive topologies that are supported by a substantial fraction of genes, even if that number
is lower than the number of genes that supports the ‘main’ topology and what are the
classificatory implications when only a small fraction of genes is informative for certain
relationships (Shen et al. 2017)? Employing large numbers of genes is also enhancing
our ability to identify putative hard polytomies on nodes where all, or almost all, genes
lack phylogenetic signal (e.g. Koenen et al. 2020b), raising questions about whether it is
justified to delimit multiple segregate genera when the relationships amongst them are
unresolved and potentially form a polytomy. Large phylogenomic datasets also highlight
cases of cytonuclear discordance even more starkly than before, raising questions about
what is the best approach when different genomes (i.e. nuclear, plastid and mitochon-
drial) have different evolutionary histories, as is often the case (e.g. Bruun-Lund et al.
2017; Thielsch et al. 2017; Lee-Yaw et al. 2019; Rose et al. 2021; Debray et al. 2022)?
Finally, we might also ask what, fundamentally, is now the role of morphology in delim-
iting taxa in the phylogenomic era (Mufioz-Rodriguez et al. 2019)?

The phylogeny of Caesalpinioideae presented here (Figs 2—12) poses many of these
questions and provides some possible answers. First, the ubiquity of gene tree conflict
found here and more generally in phylogenomics (Salichos and Rokas 2013; Wang et
al. 2019; Jiang et al. 2020; Koenen et al. 2020b; Yang et al. 2020), suggests that the
presence of conflicting topologies for a particular node alone is not sufficient reason to
avoid naming the clade subtended by that node. If many conflicting topologies exist,
but none of these occurs at a high frequency amongst the gene trees, low support values
are indicative of lack of signal rather than true conflict (Koenen et al. 2020b) and do
not need to affect classificatory decisions if there is support for the species tree topol-
ogy amongst a sizable fraction of the gene trees. The nodes subtending Macrosamanea
Britton & Rose, Zygia and Inga (Figs 11 and 12) are good examples of an abundance
of conflicting topologies none of which is widespread and the monophyly of these
genera is, therefore, not in question (except for a few outlier species of Zygia — see
Appendix 1). However, if low support for a node in the species tree is caused by an
alternative topology that is common across gene trees, the situation is more complex
and the clade in question should probably not be named pending further study with
additional accessions and genomic regions. The crown node of Archidendron (Fig. 8)
provides an example of a node with a relatively abundant alternative topology, raising
doubts about the monophyly of Archidendron (see Appendix 1; Brown et al. 2022).
Second, in cases of cytonuclear discordance (as we see across several key nodes that af-
fect decisions about generic delimitation), the smaller size of the plastid dataset and the
fact that the chloroplast genome can be considered as a single, albeit large, uniparen-
tally-inherited locus, suggest that, in most cases, nuclear phylogenies provide a more
accurate approximation of the true species tree (see Terra et al. 2022).

Finally, despite providing the main (usually sole) source of information for classifi-
cation for centuries, morphology was rapidly eclipsed as a source of data for phylogeny



34 Jens J. Ringelberg et al. / PhytoKeys 205: 3-58 (2022)

reconstruction with the advent of molecular data (e.g. Scotland et al. 2003). Neverthe-
less, despite the dominance of phylogenomic data for building accurate and robust
trees, morphology continues to play a central role as a complementary source of evi-
dence for delimiting taxa in the light of monophyly inferred from phylogenomic data
(Humphreys and Linder 2009; Gagnon et al. 2016). For example, placement of Zygia
sabatieri and Z. inundata not in a clade with the remainder of Zygia, but instead as the
sister clade of /nga in the nuclear ASTRAL phylogeny (Fig. 12) or in a grade subtend-
ing /nga in the plastome phylogeny (Suppl. material 3; Ferm et al. 2019), presents
several options for delimiting genera: transfer these two species to the genus /nga, place
both species in a new segregate genus or place each species in separate segregate genera.
All three options are valid from the perspective of monophyly, but not from a mor-
phological standpoint, because Z. sabatieri and Z. inundata have dehiscent pods and
Z. sabatieri has bipinnate leaves, in contrast to the once-pinnate leaves and indehiscent
pods that are diagnostic of the genus /zga. From a morphological perspective, it will be
preferable to assign Z. inundata and Z. sabatieri to a new segregate genus rather than to
transfer them to /nga, thereby retaining the morphological integrity and diagnosability
of the genus /nga (see Appendix 1). This example demonstrates the important role that
morphology continues to play in the era of phylogenomics: not to determine relation-
ships and infer monophyly, but to inform and guide decisions about how to partition
a phylogeny into monophyletic taxa (see also Terra et al. 2022 for another example).

Conclusions and future work

Here, we present a series of phylogenomic analyses including detailed assessment
of gene tree conflict and support that suggest that about one quarter of mimosoid
genera are non-monophyletic (Figs 2—12). This new backbone phylogeny, building
on the 122-taxon version of Koenen et al. (2020b), provides robust foundations for
aligning genera with monophyletic groups across a clade where generic delimita-
tion has long been contentious with starkly contrasting generic systems (Lewis et
al. 2005; Brown 2008) and for the higher-level classification presented in Advances
in Legume Systematics 14, Part 2. The limitations of previous work focused either
just on the Old World (e.g. Nielsen 1981, 1992) or just on the New World (e.g.
Barneby and Grimes 1996, 1997; Barneby 1998) have become more starkly appar-
ent now that pantropical sampling has been achieved, revealing the non-monophy-
ly of well-known pantropical genera, such as Albizia (Koenen et al. 2020b; Aviles
et al. 2022) and Prosopis (Hughes et al. 2022a), as well as previously unrecognised
clades with trans-Atlantic distributions (Soares et al. 2022; Koenen 2022a). Our
analyses provide a glimpse of the likely extent of morphological homoplasy (Figs
13-15).

However, despite including 420 taxa in the current analyses, it is clear that addition-
al taxon sampling will be needed to fully resolve all the possible non-monophyly issues
within Caesalpinioideae. Several priorities for future research are apparent. First, denser
taxon sampling across Senegalia and allies is needed to address the unusual dilemmas
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posed by extreme lack of resolution and cytonuclear discordance surrounding delimita-
tion of the genera across the paraphyletic grade comprising Senegalia, Pseudosenegalia,
Parasenegalia and Mariosousa (Fig. 7) that are explored here by Terra et al. (2022) who
provided a list of priority taxa for future sampling with molecular data. Second, the
likely non-monophyly of Archidendron (see Brown et al. 2022 and Appendix 1) also
remains unresolved with a clear need for additional work, especially as many species are
known from incomplete material. Archidendron and Senegalia are now the largest gen-
era in Caesalpinioideae where doubts remain about their monophyly and delimitation.
Third, a much more comprehensively sampled study is needed to address the longstand-
ing non-monophyly of Dimorphandra Schott (Fig. 3). Fourth, the generic affinities
of Calliandra wumbrosa (Fig. 7; de Souza et al. 2016) and Calliandra sp. nov., the last
species removed from Calliandra by Barneby (1998) yet to be placed in another genus,
remain to be assessed. Finally, the taxonomic implications of the non-monophyly of
Zygia revealed by Ferm et al. (2019) and confirmed here (Figs 11 and 12) have not yet
been addressed. Like Archidendron, many species of Zygia remain poorly understood.

Furthermore, although there is no evidence that any large clades in Caesalpin-
ioideae are subtended by whole genome duplication (WGD) events (Koenen et al.
2020a), it is clear that polyploidisation events have happened many times more re-
cently, scattered across the phylogeny of Caesalpinioideae, for example in Leucaena
(Govindarajulu et al. 2011; Bailey et al., in prep.), Vachellia and Mimosa (Dahmer
etal. 2011; Simon et al. 2011). Furthermore, high numbers of gene duplications de-
tected on branches subtending, for example, Symperalandra, Lemurodendron Villiers &
P. Guinet and Schleinitzia Warb. point to possible additional WGDs (Ringelberg et al.,
unpublished data). More work is needed to understand all these possible polyploidisa-
tion events, whether they involved auto- or allopolyploidisation and how such events
affect assessments of character evolution, homoplasy and generic delimitation.

Finally, our preliminary assessments of homoplasy (Figs 13-15) notwithstanding,
there is a clear need for rigorous analysis and comparison of morphological traits across
the subfamily, based on more detailed homology assessment of morphological, develop-
mental and genomic data. Morphological diagnosability of taxa is centrally important,
especially for the acceptance of novel taxonomy by the end-users of scientific names, a
group that is much larger than that of the scientific taxonomic community. We hope that
the new phylogeny presented here can provide the evolutionary framework for future
morphological studies that assess character evolution and homoplasy in greater detail.
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Appendix |

Generic non-monophyly in Caesalpinioideae — towards a new generic system for
the subfamily

Caesalpinia

Divergent circumscriptions of the genus Caesalpinia L. were largely resolved by Gagnon
et al. (2016) who reduced Caesalpinia to ca. nine species and established a new generic
system for the Caesalpinia Group as a whole, with 26 genera plus their “Ticanto clade’
(Caesalpinia crista L. and allies) as a putative 27 genus. This 27" genus accounts for the
non-monophyly of Caesalpinia in our analysis (Fig. 2) with Caesalpinia crista representing
the Ticanto clade that is re-instated as a genus in this Special Issue by Clark et al. (2022).

Dimorphandra

In line with previous studies (Luckow et al. 2005; LPWG 2017), Dimorphandra Schott
is non-monophyletic in the nuclear phylogeny (Fig. 3), but robustly supported (99%
bootstrap support (BS)) as monophyletic in the plastid tree (Suppl. material 3), in-
dicating cytonuclear discordance. This implies either splitting Dimorphandra into
two genera or sinking Mora Schomb. ex Benth., Stachyothyrsus Harms and Burkea
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Benth. into Dimorphandra (which predates these other three genera). Evidence sug-
gests splitting Dimorphandra as the preferred option. First, the three Dimorphandra
species sampled here represent the three morphologically delimited subgenera (da Silva
1986) with representatives of these subgenera intermingled with other genera render-
ing Dimorphandra polyphyletic in the legume-wide mazK phylogeny (LPWG 2017)
and Burkea and Mora are not closely related to Dimorphandra in the plastid phylogeny
(Suppl. material 3; Stachyothyrsus is not included in the plastid analysis). Second, while
Mora has been included in Dimorphandra based on morphological similarities (Sand-
with 1932; van Steenis 1975), the two genera differ in floral, seed and pod morphol-
ogy and have generally been treated as distinct (Sandwith 1932; van Steenis 1975; da
Silva 1986). African Stachyothyrsus and Burkea are morphologically (van Steenis 1975)
and geographically distinct from South American Dimorphandra and Mora. All of this
suggests that Dimorphandra will need to be split into two genera or potentially three,
although the robustly supported sister group relationship between D. davisii and D.
macrostachya (internode certainty 0.77, subtended by a long branch) would perhaps fa-
vour two genera, rather than three. Additional taxon sampling, to test the monophyly
of the three subgenera, is required before taxonomic re-arrangements can be made. If
the genus is to be split, the name Dimorphandra would remain attached to subgenus
Dimorphandra, here represented by D. gardneriana Tul. Dimorphandra exaltata Schott
is the type species of the genus. The names of the other two subgenera, Phaneropsia Tu-
lasne and Pocillum Tulasne, would be available for the remaining species. Both names
originate from the same publication (Tulasne 1844), but since Pocillum also refers to a
genus of fungi (Kirk et al. 2008), Phaneropsia would be the more suitable generic name
for the species not in Dimorphandra s.s. However, as taxon names have no priority at
different rank (Turland et al. 2018), a new generic name may also be proposed.

Xylia and Calpocalyx

The non-monophyly of Xylia with Calpocalyx nested within it was documented using
matK sequences (LPWG 2017) and is confirmed here (Fig. 4). This does not come as
a great surprise, as these genera have always been considered closely related (Villiers
1984; Lewis et al. 2005). They have overlapping geographical and ecological distribu-
tions mainly in the tropical rainforests of central and western Africa (although Xylia
has a wider distribution in Africa, Madagascar and Asia). The two genera also share a
suite of morphological characteristics (Villiers 1984; Luckow et al. 2003), including
robust woody sickle-shaped explosively dehiscent fruits (Fig. 13), a chromosome count
of 2n = 12 (Goldblatt and Davidse 1977) and pollen grains in small-sized polyads
(Jumah 1991). Since the name Xy/ia (Bentham 1841) predates Calpocalyx (Engler and
Prantl 1897) and given the morphological and ecological similarities of the two genera,
the most straightforward solution to the non-monophyly presented here would be the
transfer of the species of Calpocalyx to Xylia. However, this apparently straightforward
incorporation of Calpocalyx into Xylia is complicated by the name Esclerona Raf., an
apparently valid name predating Xylia, raising the possibility of proposing conserva-
tion of the name Xylia prior to merging these two genera.



50 Jens J. Ringelberg et al. / PhytoKeys 205: 3-58 (2022)

Entada and Elephantorrhiza

A close relationship between Entada Adans. and Elephantorrhiza Benth. has long been
suggested in all molecular phylogenies that sampled these genera (e.g. Luckow et al.
2003; Koenen et al. 2020b). With denser sampling of species, it has become clear that
Elephantorrhiza is nested within Entada (LPWG 2017), a result that is confirmed here
(Fig. 4) and which provides the basis for re-circumscription of Entada to include El-
ephantorrhiza by O’Donnell et al. (2022) in this Special Issue.

Prosopis

One of the most striking and robustly supported examples of generic non-monophyly
in our analyses is Prosopis s.1. whose species are placed in four separate lineages (Figs
4 and 5). The nodes supporting this non-monophyly are some of the most robustly
supported across the Caesalpinioideae phylogeny as a whole (Fig. 5). This shows that
P africana is not closely related to the rest of Prosopis s.1., but is placed in a grade with
other monospecific or species-poor genera subtending the core mimosoid clade (Fig.
4), confirming results from earlier studies (Catalano et al. 2008; LPWG 2017; Koenen
etal. 2020b). The rest of Old World Prosopis (three species) is sister to the Indo-Nepa-
lese genus Indopiptadenia and New World Prosopis has the Namibian — S. African Xero-
cladia nested within it (Fig. 5). A new generic classification of Prosopis s.1., accounting
for this non-monophyly, is presented in this Special Issue by Hughes et al. (2022a).

Desmanthus

The non-monophyly of Desmanthus with the monospecific Hawaiian endemic Kanaloa
Lorence & K.R. Wood nested within it (Fig. 5) mirrors earlier phylogenies (Hughes et
al. 2003; Luckow et al. 2003, 2005) and is in line with the morphological distinctiveness
of Desmanthus balsensis ].L. Contreras from the remaining species of Desmanthus (Con-
treras Jiménez 1986; Luckow 1993). A new monospecific segregate genus to account for
this non-monophyly is proposed in this Special Issue by Hughes et al. (2022b).

Dichrostachys, Gagnebina and Alantsilodendron

Dichrostachys (DC.) Wight & Arn. and Alantsilodendron Villiers are both recovered as
non-monophyletic in our sparsely sampled analysis (Fig. 5), raising questions about the
monophyly of Gagnebina Neck. ex DC., here represented by just a single species. The
Malagasy members of these three genera (all species in our phylogeny, except D. cinerea
R. Vig,) cluster together in a clade characterised by very short branches and extensive
gene tree conflict (Fig. 5) suggestive of an early burst model of diversification typical of
a rapid radiation on Madagascar (Aebli 2015). Previous molecular phylogenetic studies
have also found at least some of these genera to be non-monophyletic (Hughes et al.
2003; Luckow et al. 2003, 2005; Aebli 2015) and some species have been transferred
between genera based on morphology (Lewis and Guinet 1986). Each of these genera
contains several other species from Madagascar not sampled here. While a parsimoni-
ous solution could be to merge the three genera into Gagnebina (de Candolle 1825) (a
name predating Dichrostachys (Wight and Walker-Arnott 1834) and Alantsilodendron
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(Villiers 1994)), such a move would result in a highly variable genus, with no consistent
morphological character to distinguish it. A forthcoming monograph (Luckow, unpub-
lished data) will resolve the non-monophyly of these genera by transferring two species
of Dichrostachys to Alantsilodendron and seven to a new genus (Phillipson et al. 2022).
Additional sampling of non-Malagasy species of Dichrostachys would also be important,
especially Australian D. spicata, as it has been placed as sister to the combined Dichros-
tachys | Gagnebina | Alantsilodendron + Calliandropsis nervosa (Britton & Rose) H.M.
Hern. & Guinet clade in several studies (Hughes et al. 2003; Luckow et al. 2003, 2005;
Aebli 2015). The African species D. debiscens Balf. f. and D. kirkii Benth. also need to be
sampled as they share a dehiscent fruit type with members of the new Madagascan genus.

Stryphnodendron and Pseudopiptadenia

Our analyses support the monophyly of the Stryphnodendron clade sensu Koenen et al.
(2020b) comprising the genera Parapiptadenia Brenan, Pityrocarpa (Benth. & Hook.f.)
Britton & Rose, Pseudopiptadenia Rauschert and Stryphnodendron Mart. (Fig. 6) and
presumably Microlobius C. Presl., which, although not sampled here, has been shown
to be nested within or sister to Stryphnodendron (Ribeiro et al. 2018; Simon et al. 2016;
see also Lima et al. 2022). Of these genera, only Parapiptadenia is monophyletic in
our analyses, although Pityrocarpa is here only represented by a single taxon (Fig. 6).
Stryphnodendron is non-monophyletic as S. duckeanum Occhioni does not group with
the rest of the genus (Fig. 6), in line with flower, fruit and branching characteristics that
suggested transfer of S. duckeanum to another genus (Scalon 2007) and with previous
molecular phylogenies showing S. duckeanum separated from the rest of Stryphnoden-
dron (Jobson and Luckow 2007; Simon et al. 2016; Ribeiro et al. 2018; Sauter 2019).
Similarly, Pseudopiptadenia is also non-monophyletic with 2 schumanniana placed as
sister to the single sampled species of Pityrocarpa, rather than forming a clade with
Pseudopiptadenia contorta (DC.) G.P. Lewis & M.P. Lima and P psilostachya (DC.) G.P.
Lewis & M.P. Lima (Fig. 6). Several previous molecular phylogenies also found Psex-
dopiptadenia to be non-monophyletic — however, those studies did not include P schu-
manniana and found P brenanii G.P. Lewis & M.P. Lima (not sampled here) to be the
outlier instead (Simon et al. 2016; Ribeiro et al. 2018). The sparsely sampled backbone
phylogeny of the Stryphnodendron clade presented here provides the foundations for
more densely sampled analyses and re-delimitation of both Stryphnodendron (Lima et
al. 2022) and Pseudopiptadenia | Pityrocarpa (Borges et al. 2022) in this Special Issue.
The remaining genera in the Stryphnodendron and Mimosa clades are all monophyletic (Fig.
6), confirming previous phylogenetic studies and taxonomic rearrangements, including seg-
regation of Lachesiodendron PG. Ribeiro, L.P. Queiroz & Luckow from Piptadenia (Ribeiro
etal. 2018), as well as placement of amphi-Atantic Adenopodia C. Presl as sister to Mimosa
and the sister group relationships amongst the main clades of Mimosa (Simon et al. 2011).

Senegalia and allied genera
The striking cytonuclear discordance whereby Senegalia Raf. appears as non-mono-
phyletic in the analyses of nuclear gene sequences, but as monophyletic in the analyses
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of plastomes, was first revealed by Koenen et al. (2020b), a result confirmed here by
sampling more species of Senegalia, plus the closely related Mariosousa, Parasenegalia
and Pseudosenegalia (Fig. 7). In the nuclear gene analyses, the two clades of Senegalia
plus these three other genera and the incompletely known Albizia leonardii Britton &
Rose ex Barneby & J.W. Grimes form a paraphyletic grade with very short and poorly
supported or unsupported internal branches (Fig. 7). The complex and intriguing is-
sues these features raise for delimitation of Senegalia are explored by Terra et al. (2022),
who conclude that sequencing of more species is required.

Calliandra

Following reduction of Bentham’s (1875) broad trans-continental circumscription of
Calliandra Benth. to just the New World species by Barneby (1998), five genera have
been segregated to account for the majority of the Old World species. Now just a
handful of Old World species remain to be resolved, including the Asian Calliandra sp.
nov. (Poilane 9150), that, as expected, does not group together with the New World
Calliandra s.s., but is instead sister to the Indian monospecific genus Sanjappa E.R.
Souza & M.V. Krishnaraj in the Zapoteca clade (Fig. 7). Bentham (1875) included
four Asian species in Calliandra (de Souza et al. 2013), which share the apically dehis-
cent pods of Calliandra (Fig. 13a—f), but in other respects present anomalies, especially
in the configuration of their polyads. The identities of these Asian Calliandra species
have long been considered ambiguous (Barneby 1998). Two of these Asian species have
been assigned to different genera (C. ¢ynometroides Bedd. to Sanjappa (de Souza et al.
2016) and C. geminata (Wight & Arn.) Benth. to 7hailentadopsis Kosterm. (Lewis
and Schrire 2003)), while the generic placement of the remaining species, C. umbrosa
(Wall.) Benth., remains unknown. The fourth species, C. griffithii Baker ex Benth.,
is now considered a subspecies of C. umbrosa (Paul 1979). Calliandra umbrosa has
never been included in a molecular phylogenetic analysis (de Souza et al. 2013, 2016)
and, unfortunately, sequencing of C. umbrosa was unsuccessful in this study. However,
polyad, leaf, corolla and pod morphology, plus the presence of facultatively spinescent
stipules, distinguish C. umbrosa from other genera, suggesting that it should poten-
tially be assigned to a new genus (de Souza et al. 2013, 2016). Until DNA sequences
of C. umbrosa can be obtained to ascertain its relationship to Calliandra sp. nov., this
residual non-monophyly of the genus Calliandra cannot be resolved.

Pithecellobium and allies

While the Pithecellobium alliance is the only one of the informal alliances of Barneby
and Grimes (1996) whose monophyly has withstood the test of phylogenomic analysis
(Koenen et al. 2020b), other than Pithecellobium Mart. itself, our sparsely sampled
phylogeny of this clade suggests that the monophyly of the four other genera placed
in the Pithecellobium clade (Painteria Britton & Rose, Havardia Small, Ebenopsis
Britton & Rose and Sphinga Barneby & ].W. Grimes) is doubtful and needs to be
further tested with more complete taxon sampling (Fig. 7). Even with our limited
taxon sampling, Painteria and Havardia are clearly non-monophyletic (Fig. 7), raising
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significant doubts about the taxonomic status of Ebenopsis and Sphinga, which are
both represented by only one species in our trees. Painteria is especially poorly distin-
guished from Havardia; Sphinga was originally described in Havardia and previous
studies (Nielsen 1981; Polhill 1994) placed all four genera in a more broadly defined
Havardia (Brown 2008). Such a solution might, therefore, seem sensible, but together
they form a paraphyletic grade in our phylogenies (Fig. 7), suggesting that unless all
four genera were to be sunk back into Pithecellobium (from which they were segregated
(Barneby and Grimes 1990)), these four genera require at least three names, as they
are divided over three (poorly-supported) lineages: one comprising Spinga acatlensis
(Benth.) Barneby & ]J.W. Grimes and Havardia campylacantha (L. Rico & M. Sousa)
Barneby & J.W. Grimes, one Painteria leptophylla (DC.) Britton & Rose, Pa. elachis-
tophylla (A. Gray ex S. Watson) Britton & Rose and Ebenopsis confinis (Standl.) Brit-
ton & Rose and one H. pallens (Benth.) Britton & Rose, which is the type species of
Havardia and sister to Pithecellobium. Clearly, taxon sampling in our phylogeny is too
limited to draw firm taxonomic conclusions. A new phylogeny of the Pithecellobium
clade, presented here in this Special Issue, is used as the basis for erecting two new
genera to account for these generic non-monophyly issues (Tamayo-Cen et al. 2022).
This new phylogeny, based on a small set of DNA sequence loci, but with denser taxon
sampling than that encompassed here, is not fully congruent with the phylogenomic
backbone presented in Fig. 7.

The Archidendron clade

The genera and lineages of the large Archidendron clade comprising Acacia Mill., Archi-
dendron F. Muell. and six smaller genera (Fig. 8; Koenen et al. 2020b), together make
up over one third of all mimosoid species and are restricted to Australasia. Relation-
ships across the backbone of this clade are complex and generally poorly resolved with
very short branches and high levels of gene tree conflict and lack of phylogenetic signal
across a significant fraction of genes (Fig. 8), such that the topologies across different
analytical approaches can differ. This suggests that some nodes across this backbone
should better be viewed as putative polytomies. Three genera in this clade, Wallaceoden-
dron Koord., Pararchidendron 1.C. Nielsen and Paraserianthes 1.C. Nielsen, are mono-
specific. Falcataria (1.C. Nielsen) Barneby & ].W. Grimes comprises three species but
is represented by only one taxon in our phylogeny, so no conclusion can, therefore, be
made about its monophyly, although our results support the segregation of this genus
from Paraserianthes (Barneby and Grimes 1996; Brown et al. 2011). Three of the four
remaining genera are monophyletic: Acacia, Archidendron and Serianthes Benth. (con-
firming the results of Demeulenaere et al. (2022) in this Special Issue). However, the
monophyly of Archidendron remains doubtful as it is supported by few gene trees and
opposed by many (Fig. 8) and the genus is not monophyletic in the plastid tree (Suppl.
material 3). This is very much in line with previous findings of a non-monophyletic Ar-
chidendron (Brown et al. 2008, 2011; Iganci et al. 2016; LPWG 2017). The likely non-
monophyly of Archidendron is explored in more detail in this Special Issue by Brown
et al. (2022). It is notable that the two well-supported Archidendron subclades found
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here are replicated by Brown et al. (2022), where their morphological and geographical
identities are discussed in detail. Finally, the non-monophyly of Archidendropsis 1.C.
Nielsen, documented and addressed in this Special Issue by Brown et al. (2022), is
confirmed by the much larger phylogenomic dataset analysed here (Fig. 8).

Our results weakly support Paraserianthes lophantha as sister to Acacia (Fig. 8), in
line with earlier findings (Brown et al. 2008, 2011; Koenen et al. 2020b) and shared
morphological similarities including hard seeds that are stimulated to germinate by
fire (Brown et al. 2011), minute anthers and numerous stamens (Barneby and Grimes
1996). As R lophantha contains two geographically disjunct subspecies, P lophantha
subsp. montana (Jungh.) 1.C. Nielsen in Indonesia and P lophantha subsp. lophantha
(the subspecies sequenced here) in southern Australia (Brown et al. 2011), sequencing
the missing subspecies would be worthwhile to check that the two cluster together
as sister to Acacia. However, it is important to note that this relationship is sensitive
to the type of dataset and phylogenetic method: the ASTRAL trees (Fig. 8) recover
P lophantha as the sister of Acacia, whereas the nuclear RAXML phylogenies (Ringel-
berg et al. 2022) find a sister relationship between Acacia and Archidendron plus Archi-
dendropsis xanthoxylon (C.T. White & W.D. Francis) I.C. Nielsen, the PhyloBayes gene
jack-knifing phylogeny (Ringelberg et al. 2022) resolves the whole Archidendron clade
as one large polytomy lacking a clear sister lineage to Acacia and the plastid tree (Suppl.
material 3) recovers Archidendropsis xanthoxylon as sole sister of Acacia. Furthermore,
P lophantha and several species of Archidendron are also identified as species often
changing positions across trees by RogueNarok (Aberer et al. 2013). The high levels of
intergenic conflict, very short branches, extremely low bootstrap support values espe-
cially in the nucleotide RAXML phylogenies, lack of concordance and signal amongst
the gene trees and failure to reject a polytomy by ASTRAL (Fig. 8), all suggest that the
backbone of the Archidendron clade should perhaps best be viewed as one large poly-
tomy, as depicted in the PhyloBayes consensus tree (Ringelberg et al. 2022). However,
the number (eight in the PhyloBayes phylogeny) and precise identity of lineages aris-
ing from this tangle remain unclear and relationships amongst the genera of this clade
remain highly uncertain pending additional taxon sampling and detailed investigation
of the causes of gene tree conflict and possible evidence for introgression.

Albizia

At the start of this study, the genus Albizia was dubbed the last pantropical so-called
‘dustbin’ genus pending resolution (Koenen et al. 2020b). Here, we show that Albizia
s.I. is rampantly non-monophyletic, most notably because the bulk of the Old and New
World species are placed in separate clades (Figs 9 and 10). This Old World — New World
split is remedied in this Special Issue by Aviles et al. (2022) who resurrect the genus Peu-
dalbizzia Britton & Rose for the majority of the New World species placed in Barneby’s
Albizia section Arthrosamanea, with Albizia s.s. now restricted to just the Old World
species, which still includes ca. 90 spp. (Koenen et al., unpubl. data). Furthermore, the
disparate placements of several other species of Albizia across the phylogeny, viz: Albizia
carbonaria Britton (Fig. 8), the long-neglected African Albizia species previously often
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placed in Cathormion or Samanea (Benth.) Merr. (Figs 9 and 11) and Albizia leonardii
(Fig. 7), are all accounted for with new generic placements and nomenclatural combina-
tions (Koenen 2022b; Soares et al. 2022), one synonymisation (Terra et al. 2022) and a
new segregate genus (Koenen 2022a), all of them being published in this Special Issue.

Abarema, Hydrochorea and Balizia

The recent re-circumscription of Abarema Pittier to include just two species and transfer of
the remaining species to the re-instated Punjuba Britton & Rose and Jupunba Britton &
Rose (Guerra et al. 2016, 2019; Iganci et al. 2016; Soares et al. 2021), is broadly supported
here (Figs 9 and 11), except for the anomalous placement of Jupunba macradenia (Pittier)
M.V.B. Soares, M.P. Morim & Iganci which is sister to the Hydrochorea + Balizia clade (Fig,
9). This placement is unexpected and somewhat suspect considering /. macradenia is firmly
placed in Jupunba in Soares et al. (2021). As found by Iganci et al. (2016), Koenen et al.
(2020b) and Soares et al. (2021), Balizia is non-monophyletic with the genus Hydrochorea
plus two African species of Albizia nested within it (Fig. 9). Hydrochorea is re-circumscribed
to accommodate all these elements by Soares et al. (2022) in this Special Issue.

Leucochloron

Koenen et al. (2020b) showed that Leucochloron is polyphyletic and that result is confirmed
here, split between the Albizia and Inga clades (Figs 10 and 11). A new segregate genus to
account for this non-monophyly is proposed in this Special Issue by de Souza et al. (2022b).

Zygia, Macrosamanea and Inga

Alongside Archidendron, the large Neotropical, mainly rainforest genus Zygia remains
one of the least well-documented genera of mimosoids, with many species known from
incomplete material (Barneby and Grimes 1997). Previous work by Ferm et al. (2019)
showed that, while the bulk of genus Zygia is monophyletic, a handful of outlier species
have affinities to other genera: Zygia ocumarensis (Pittier) Barneby & J.W. Grimes is sister
to Macrosamanea Britton & Rose ex Britton & Killip, Marmaroxylon magdalenae Kil-
lip ex. L. Rico (treated as a synonym of Z. ocumarensis by Barneby and Grimes (1997))
is nested in Jupunba and Z. inundata and Z. sabatieri are together sister to /nga. With
the exception of M. magdalenae, which is not included in this study, these placements
are confirmed here with phylogenomic data (Figs 11 and 12) and reflect the morpho-
logical distinctiveness of these species from the rest of the genus (Barneby and Grimes
1997; Ferm et al. 2019) which prompted placements in their own separate monospe-
cific sections of Zygia (Barneby and Grimes 1997). New nomenclatural combinations to
deal with these outlier Zygia species are still pending. We suggest that Zygia ocumarensis
should best be transferred to Macrosamanea, as it shares bipinnate leaves with multiple
pairs of pinnae and an absence of cauli-/ramiflory (which is almost universal in Zygia)
with several species of Macrosamanea (Barneby and Grimes 1996; Ferm et al. 2019).
The identity of Marmaroxylon magdalenae needs to be re-evaluated, but the evidence of
Ferm et al. (2019), who sampled the type material, suggests it should be transferred to
Jupunba. The generic placements of Z. inundata and Z. sabatieri are more contentious.
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Arguments can be made to transfer Z. inundata to Inga (Ferm et al. 2019): it was origi-
nally described in /nga and it shares once-pinnate leaves and absence of cauli-/ramiflory
with /nga (Barneby and Grimes 1997; Ferm et al. 2019). However, Z. inundata was
placed as the sole sister of /nga in the plastid tree (Suppl. material 3) and by Ferm et al.
(2019), whereas the nuclear gene data suggest that Z. inundata is sister to Z. sabatieri and
together these two species form the sister clade of /nga (Fig. 12). Zygia sabatieri has bi-
pinnate leaves and both Z. sabatieri and Z. inundata have dehiscent pods, characteristics
that distinguish these species from /nga with its uniformly once-pinnate leaves and inde-
hiscent pods. In order to maintain a morphologically coherent and homogeneous /nga
with respect to these diagnostic characters, segregating Z. inundata and Z. sabatieri as a
new genus would appear to be advantageous. /ngopsis Barneby & J.W. Grimes and Pseu-
docojoba Barneby & J.W. Grimes, the names for the monospecific sections containing
Z. inundata and Z. sabatieri, respectively (Barneby and Grimes 1997), are two available
names, of which Zngopsis would be preferable given the morphological and phylogenetic
proximity of this clade to /nga and the lack of a close relationship to Cojoba Britton &
Rose. However, since these sectional names have no priority at generic rank (Turland et
al. 2018), alternatively, a new name could equally be proposed. Finally, while Zygia s.s.
was reasonably well sampled by Ferm et al. (2019) and also in the current study (Fig.
12), alongside further herbarium taxonomic work and field studies to clarify species,
denser phylogenetic taxon sampling is desirable, in particular to include Z. eperuetorum
(Sandwith) Barneby & J.W. Grimes. This species is known only from the Essequibo
Valley in Guyana, was placed in its own section by Barneby and Grimes (1997), has an
unusual combination of morphological characters not found elsewhere in Zygia and the
fruit remains unknown. Zygia eperuetorum may well, therefore, represent an additional
separate lineage that could potentially merit recognition as a distinct genus.
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